A new entry to 9-azabicyclo[3.3.1]nonanes using radical translocation/cyclisation reactions of 2-(but-3-ynyl)-1( $o$-iodobenzoyl)piperidines $\dagger$

# Tatsunori Sato, Taro Yamazaki, Yumi Nakanishi, Jun-ichi Uenishi and Masazumi Ikeda* 

Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8414, Japan
Received (in Cambridge, UK) 2nd April 2002, Accepted 22nd April 2002
First published as an Advance Article on the web 13th May 2002

The 2-[4-(trimethylsilyl)but-3-ynyl]piperidines 16a-c, upon treatment with tributyltin hydride in the presence of azoisobutyronitrile in refluxing toluene, gave the 9 -azabicyclo[3.3.1]nonanes $17 \mathrm{a}-\mathbf{c}$ in high yields, respectively. Compound $\mathbf{1 7} \mathbf{c}$ was subjected to desilylation, ozonolysis, and subsequent 1,2-transposition of the resulting carbonyl group to give 9-benzoyl-1-methyl-9-azabicyclo[3.3.1]nonan-3-one, a potential precursor for the synthesis of $( \pm)$-euphococcinine.

## Introduction

Bridged azabicyclic rings are widely found as the basic structural elements in biologically active alkaloids such as cocaine, atropine, and epibatidine. Recently we have developed a new synthetic method for the 7 -azabicyclo[2.2.1]heptane and 8 azabicyclo[3.2.1]octane ring systems $\mathbf{4}$ which involves treatment of 1-(o-iodobenzoyl)-2-(prop-2-ynyl)-pyrrolidines and -piperidines 1 with tributyltin hydride $\left(\mathrm{Bu}_{3} \mathrm{SnH}\right)$ in the presence of azoisobutyronitrile (AIBN) in boiling toluene. ${ }^{1}$ The formation of 4 can be formulated as proceeding via the $\alpha$-acylamino radicals 3 which are generated by a 1,5-hydrogen transfer (a radical translocation) ${ }^{2}$ of the initially formed aryl radicals $\mathbf{2}$. The radicals 3 then undergo a 5 -exo-dig cyclisation to lead to 4 (Scheme 1). As a further extension of this reaction, we


Scheme 1
have now investigated the $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical reaction of the 2-(but-3-ynyl)piperidines 16a-c and found that the translocation and 6 -exo-dig cyclisation reactions proceed in a regioselective manner to afford the expected 9 -azabicyclo[3.3.1]nonane ring system. ${ }^{3}$ In this paper we also describe a transformation of the cyclised product 17 c into 9 -benzoyl-1-methyl-9-azabicyclo[3.3.1]nonan-3-one 28, a protected form of ( $\pm$ )-euphococcinine 29. ${ }^{4}$

[^0] details for 5-16. See http://www.rsc.org/suppdata/p1/b2/b203243k/

## Results and discussion

The radical precursor 16a was prepared starting from methyl $N$-Boc-pipecolinate $5^{5}$ according to the procedures previously described for the synthesis of the pyrrolidine congener ${ }^{1 d}$ (Scheme 2). Thus, $\mathbf{5}$ was subjected to allylation, and hydroboration of the resulting allylated ester $\mathbf{6}$ with bis(3-methylbutan-2yl)borane (disiamylborane) followed by oxidation afforded the alcohol 7a. Swern oxidation of 7a gave the aldehyde 13a, which was then allowed to react with bromoform and triphenylphosphine in the presence of potassium tert-butoxide to give the dibromoalkene 14a. Treatment of 14a with butyllithium and quenching with trimethylsilyl chloride gave the $N$-Boc-2-[4-(trimethylsilyl)but-3-ynyl]piperidine 15a. Replacement of the $N$-Boc group by an $o$-iodobenzoyl group gave the radical precursor 16a. The radical precursor 16b was also prepared from 5, which was subjected successively to $\mathrm{LiAlH}_{4}$ reduction (9b), Swern oxidation (10b), the Horner-Emmons reaction with triethyl phosphonoacetate (11b), catalytic hydrogenation over $\mathrm{Pd}-\mathrm{C}(\mathbf{1 2 b})$, and $\mathrm{LiAlH}_{4}$ reduction to afford the alcohol 7b. This alcohol 7b was converted into 16b (via 13b, 14b and 15b) in a similar manner to the reaction sequences used for the preparation of 16a.

A toluene solution of $\mathrm{Bu}_{3} \mathrm{SnH}$ ( 2.7 mol equiv.) and a small amount of AIBN ( 0.32 mol equiv.) was added by syringe pump to a refluxing solution of 16a in toluene over a period of 1 h and the mixture was further refluxed for 2 h . The crude material was chromatographed on silica gel to give a ca. 1:1 diastereomeric mixture of the 9 -azabicyclo[3.3.1]nonane 17 a in $98 \%$ combined yield. No simple reduction product was obtained. The structure of $\mathbf{1 7 a}$ was confirmed by the following chemical transformation. Treatment of $\mathbf{1 7 a}$ with trifluoroacetic acid in DCM gave the methylene derivative 18a which was then oxidised with ozone to afford the ketone 19a in $45 \%$ overall yield (Scheme 3). The ketone 19a showed a strong carbonyl absorption at 1732 $\mathrm{cm}^{-1}$ (a ketone and an ester) in addition to an absorption due to the $N$-benzoyl group at $1646 \mathrm{~cm}^{-1}$ in the IR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum revealed a doublet of doublets due to a bridgehead proton $(5-\mathrm{H})$ at $\delta 4.32(J 6.2$ and 3.7 Hz$)$.

Similar treatment of $\mathbf{1 6 b}$ with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$ gave the expected 9 -azabicyclo[3.3.1]nonane 17b in $67 \%$ yield as a $c a$. $1: 1$ diastereomeric mixture, along with the hexahydropyrido-[2,1-a]isoindolone 20 in $22 \%$ yield. The compound $\mathbf{1 7 b}$ was again converted into the ketone 19 b via the methylene derivative $\mathbf{1 8 b}$ in $55 \%$ overall yield, which showed a ketonic absorption at


16b: $R=H$
16c: $\mathrm{R}=\mathrm{Me}$
Scheme 2 Reagents and conditions: i, $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$, THF, $-78^{\circ} \mathrm{C}$; then $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$; ii, $\mathrm{Sia}_{2} \mathrm{BH}$, THF; then aq. $\mathrm{NaOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$; iii, $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$; then MeI; iv, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O} ; \mathrm{v},(\mathrm{COCl})_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; vi, $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{BuLi}$, THF; vii, $\mathrm{H}_{2}\left(5 \mathrm{~kg} \mathrm{~cm}^{-2}\right), 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{AcOEt}$; viii, $\mathrm{CHBr}_{3}, \mathrm{PPh}_{3}, \mathrm{Bu}^{t} \mathrm{OK}$, toluene; ix, BuLi, TMEDA, THF, $-78{ }^{\circ} \mathrm{C}$; then $\mathrm{Me}_{3} \mathrm{SiCl}$; x, $\mathrm{Me}_{3} \mathrm{SiI}, \mathrm{MeCN}$; then MeOH ; xi, $o$-iodobenzoyl chloride, $\mathrm{DMAP}^{2} \mathrm{Et}_{3} \mathrm{~N}$, benzene.
$1729 \mathrm{~cm}^{-1}$ in the IR spectrum. The structure of the minor product 20 was assigned by a comparison of the spectroscopic data with those of the closely related compound 21. ${ }^{1 c}$ The product distribution of $\mathbf{1 7 b}(65 \%)$ and $20(23 \%)$ probably reflects the population of two conformers $\mathbf{A}$ and $\mathbf{B}$ of $\mathbf{1 6 b}$, which generate the $\alpha$-acylamino radicals at the 6 - (leading to $\mathbf{1 7 b}$ ) and 2-position of the piperidine ring (leading to 20), respectively, through the corresponding short-lived aryl radicals. Conformer $\mathbf{A}$ is favoured over conformer $\mathbf{B}$ because the steric repulsion between the bulky $o$-iodophenyl and 2-[4-(trimethyl-silyl)but-3-ynyl] groups may occur in the latter, in spite of the


Scheme 3 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, reflux; ii, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, then $\mathrm{PPh}_{3}$.
fact that the side chain at the 2-position mainly occupies an axial position in order to minimise allylic 1,3 -strain ${ }^{16,6}$ with the $\mathrm{N}=\mathrm{C}$ double bond in the amide.

Encouraged by the success of the synthesis of the 9 -azabicyclo[3.3.1]nonane ring system, we then applied the present method to the synthesis of ( $\pm$ )-euphococcinine 29, which is an alkaloid isolated from a small sea-coast plant, Euphorbia atoto $^{7}$ and also found in the defence secretion of the ladybugs Cryptolaenus montrouzieri ${ }^{8 a}$ and Epilachna varivesti. ${ }^{8 b}$ The radical precursor 16c was prepared from methyl $N$-Boc-2-methylpiperidine-2-carboxylate 8 (via $9 \mathrm{c}-\mathbf{1 5 c}$ ) by the same reaction sequences as those used for the preparation of $\mathbf{1 6 b}$. The $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical reaction of $\mathbf{1 6 c}$ proceeded efficiently to give the 9 -azabicyclo[3.3.1]nonane 17c in $95 \%$ yield as a $c a$. 1:1 diastereomeric mixture, which was converted into the ketone 19c via the methylene derivative 18c in $63 \%$ overall yield (see Scheme 3).

The 1,2 -transposition ${ }^{9}$ of the carbonyl group of $\mathbf{1 9 c}$ was then investigated. Considerable difficulty, however, was encountered in finding a route to the intermediate alkene 23. Sodium borohydride reduction of 19c gave the alcohol 22 in $81 \%$ yield. A variety of procedures for the dehydration of the alcohol 22, employing the mesyl derivative in refluxing lutidine or collidine, the Burgess reagent, ${ }^{10}$ and the xanthate in refluxing xylene were examined without success. In general, either unchanged material or uncharacterised products were obtained. Only when the alcohol 22 was treated with the Martin sulfurane dehydrating agent at $80^{\circ} \mathrm{C}$ in benzene ${ }^{11}$ the desired alkene $\mathbf{2 3}$ was obtained but in $5 \%$ yield; the major product ( $57 \%$ yield) was the bis(trifluoromethyl)phenylmethyl ether 24, probably with inversion of configuration. The difficulty of attaining dehydration under the $E 2$ elimination conditions may be ascribed to the rigidly fixed equatorial configuration of the hydroxy group of 22. The syn elimination is also unfavourable because the location of the 7-methylene group blocks formation of the cyclic transition state involving the axial hydrogen at the 3position $\ddagger$ which is required for this elimination to take place.

[^1]This view was supported later by isolation of the isomeric axial alcohol 26, which underwent smooth dehydration with Martin sulfurane to give back the alkene 23. An alternative synthesis of the alkene 23 was achieved by palladium-catalysed hydrogenolysis ${ }^{12}$ of the alkenyl triflate $\mathbf{2 5}^{13}$ in $61 \%$ overall yield in two steps from ketone 19c (Scheme 4).


Scheme 4 Reagents and conditions: i, $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; ii, Martin sulfurane, benzene, $80{ }^{\circ} \mathrm{C}$; iii, LDA, THF, $-78{ }^{\circ} \mathrm{C}$; then Comins' reagent; iv, $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{BH}_{3}$, cat. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, 40^{\circ} \mathrm{C}$; v, $\mathrm{BH}_{3} \cdot$ THF, THF; then aq. $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}$; vi, TPAP, NMO, $4 \AA-\mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Hydroboration of the alkene $\mathbf{2 3}$ with borane-THF complex and oxidation of the intermediate gave a mixture of two alcohols which were separated by silica gel chromatography to give the alcohols $\mathbf{2 6}$ and 27 in 31 and $39 \%$ yield, respectively. In an attempt to improve the regioselectivity, 9-BBN was used instead of borane-THF complex but the starting material was recovered unchanged. The structure and stereochemistry of the alcohol 26 were confirmed by oxidation with TPAP$\mathrm{NMO}^{14}$ to the ketone 19c ( $95 \%$ yield) and the aforementioned smooth dehydration with Martin sulfurane to the alkene 23 ( $85 \%$ yield). The assigned stereochemistry of the alcohols 22 and 26 is consistent with the view that both hydride and borane approach from the less crowded convex face of the ketone $\mathbf{1 9} \mathrm{c}$ and the alkene $\mathbf{2 3}$, respectively. The structure and stereochemistry of the alcohol 27 were assigned on the basis of ${ }^{1} \mathrm{H}$ NMR spectroscopic evidence (the axial proton at the 3 -position appeared at $\delta 4.62$ as a triplet of triplets with coupling constants of 11.0 and 6.4 Hz ) and oxidation with TPAP-NMO to the ketone 28 quantitatively. The ketone 28 is a potential precursor for the synthesis of $( \pm)$-euphococcinine 29.

In summary, we have revealed that 2-(but-3-ynyl)-1-(o-iodobenzoyl)piperidines undergo radical translocation and 6 -exodig cyclisation to give the 9 -azabicyclo[3.3.1]nonane ring system in high yields.

## Experimental

Mps were measured on a Yanaco MP-J3 micro melting-point apparatus and are uncorrected. IR spectra were recorded on a JASCO-IR-A-100 or a JASCO-FT/IR-410 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR (60, 300 and 400 MHz ) and ${ }^{13} \mathrm{C}$ NMR (75.4 and
100.5 MHz ) spectra were measured on a JEOL-JNM-PMX 60 , a Varian XL-300 or a Varian UNITY INOVA 400NB spectrometer for solutions in $\mathrm{CDCl}_{3}$. $\delta$-Values quoted are relative to tetramethylsilane ( $\delta_{\mathrm{H}} 0$ ) and $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{C}} 77.02\right)$ for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively, and $J$-values are given in Hz. Exact mass determinations (EI and FAB mass spectra) were obtained on a JEOL-GCmate or a JEOL-SX 102A instrument (3-NOBA as matrix), respectively. Column chromatography was performed on silica gel $60 \mathrm{PF}_{254}$ (Nacalai Tesque) under pressure. The experimental details for the preparation of the radical precursors 16a-c are described in the ESI. $\dagger$

## Radical cyclisation of compound 16a

General procedure. To a stirred, refluxing solution of 16a (493 $\mathrm{mg}, 0.99 \mathrm{mmol})$ in toluene ( $100 \mathrm{~cm}^{3}$ ) was added a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(780 \mathrm{mg}, 2.68 \mathrm{mmol})$ and AIBN ( $53 \mathrm{mg}, 0.32 \mathrm{mmol}$ ) in toluene $\left(100 \mathrm{~cm}^{3}\right)$ via a syringe during 1 h , and the mixture was further refluxed for 2 h . After removal of the solvent in vacuo, diethyl ether ( $30 \mathrm{~cm}^{3}$ ) and $8 \%$ aq. $\mathrm{KF}\left(50 \mathrm{~cm}^{3}\right)$ were added to the residue, and the whole was vigorously stirred at room temperature for 1 h . The organic phase was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt $(10: 1)$ ] to give a mixture of the $(E)$ and $(Z)$ geometrical isomers (in a ratio of $58: 42$ ) of methyl 9-benzoyl-4-(trimethylsilylmethylene)-9-azabicyclo-[3.3.1]nonane-1-carboxylate 17a ( $360 \mathrm{mg}, 98 \%$ ), mp $98.5-99^{\circ} \mathrm{C}$ [from petroleum ether (distillation range $80-110^{\circ} \mathrm{C}$ )] (Found: C, 67.80; H, 8.16; N, 3.80. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}$ requires C, 67.89; H, $7.87 ; \mathrm{N}, 3.77 \%) ; \nu_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1745$ and $1650 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ ) (the line-broadening of each signal occurred due to slow conformational exchange on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ time scale) $-0.28(9 \mathrm{H} \times 58 / 100, \mathrm{br} \mathrm{s}), 0.09(9 \mathrm{H} \times 42 / 100, \mathrm{br}$ s $), 1.60-2.05$ ( 6 H , unresolved m ), 2.15-2.88 ( 4 H , unresolved m ), 3.707 ( $3 \mathrm{H} \times 42 / 100, \mathrm{~s}$ ), $3.713(3 \mathrm{H} \times 58 / 100, \mathrm{~s}), 4.47(0.42 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.75(0.58 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.88-5.18(0.42 \mathrm{H}, \mathrm{br}), 5.20(0.58 \mathrm{H}$, br s), 7.36-7.46 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ) and 7.47-7.55 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ).

## Radical cyclisation of compound 16b

Following the general procedure, $\mathbf{1 6 b}(202 \mathrm{mg}, 0.46 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(332 \mathrm{mg}, 1.14 \mathrm{mmol})$ and AIBN ( 22 mg , 0.13 mmol ) in toluene ( $45 \mathrm{~cm}^{3}$ ) and the crude mixture was chromatographed on silica gel [hexane-AcOEt (20: 1)]. The first fraction gave a mixture of $(E)$ and $(Z)$ geometrical isomers of 9-benzoyl-2-(trimethylsilylmethylene)-9-azabicyclo[3.3.1]nonane $\mathbf{1 7 b}$ ( $96 \mathrm{mg}, 67 \%$ ) as a colourless oil (Found: $\mathrm{M}^{+}$, 313.1856. $\mathrm{C}_{19} \mathrm{H}_{27}$ NOSi requires $M, 313.1862$ ); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $1631 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (because of the presence of mainly two rotamers for each geometrical isomer, the spectrum cannot be well analysed due to its complexity) $-0.27,0.10,0.13$ and 0.20 (total 9 H , all s, $\mathrm{SiMe}_{3}$, in the proportions ca. $37: 18: 16: 29$, respectively), 1.22-2.26, 2.33-2.47, 2.56-2.64 and 2.74-2.90 (total 10 H , all m), 3.89-3.99 (m), 4.25 (br s), 4.53 (br s), 4.69$4.72(\mathrm{~m}), 4.90-5.40(\mathrm{~m}), 5.09-5.15$ (br), 5.18 (br s), $5.30(\mathrm{br} \mathrm{s})$, $5.38(\mathrm{br} \mathrm{s}), 5.43(\mathrm{br} \mathrm{s})$ and $5.55(\mathrm{br} \mathrm{s})($ total 3 H ) and 7.34-7.42 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ).
The second fraction gave 10b-[4-(trimethylsilyl)but-3-ynyl]-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-6-one 20 ( 32 mg , $22 \%$ ) as a colourless oil (Found: $\mathrm{M}^{+}$, 311.1700. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NOSi}$ requires $M, 311.1705$ ); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2175$ and $1693 ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) (a mixture of mainly three rotamers in the proportions $75: 21: 4$, for the major rotamer) $0.09\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$, $1.25-1.39(2 \mathrm{H}, \mathrm{m}), 1.47(1 \mathrm{H}, \mathrm{ddd}, J 17.0,11.2$ and 5.1$)$, $1.69-$ $1.89(5 \mathrm{H}, \mathrm{m}), 2.01(1 \mathrm{H}$, ddd, $J 14.3,11.2$ and 5.1$), 2.15(1 \mathrm{H}, \mathrm{br}$ d, $J 13.4$ ), $2.54(1 \mathrm{H}$, ddd, $J 14.3,11.2$ and 5.3$), 2.89(1 \mathrm{H}$, td, $J 13.4$ and 3.3$), 4.42(1 \mathrm{H}, \mathrm{ddt}, J 13.4,5.1$ and 1.3$), 7.37(1 \mathrm{H}, \mathrm{dt}$, $J 7.5$ and $1.1, \mathrm{ArH}), 7.44(1 \mathrm{H}, \mathrm{td}, J 7.5$ and $1.1, \mathrm{ArH}), 7.54$ $(1 \mathrm{H}, \mathrm{td}, J 7.5$ and $1.3, \mathrm{ArH})$ and $7.84(1 \mathrm{H}, \mathrm{dt}, J 7.5$ and 1.3 , ArH ).

## Methyl 9-benzoyl-4-methylene-9-azabicyclo[3.3.1]nonane-1carboxylate 18a

To a solution of $\mathbf{1 7 a}(300 \mathrm{mg}, 0.80 \mathrm{mmol})$ in $\mathrm{DCM}\left(5 \mathrm{~cm}_{3}\right)$ was added trifluoroacetic acid ( $226 \mathrm{mg}, 1.98 \mathrm{mmol}$ ) at $0{ }^{\circ} \mathrm{C}$ and the whole was stirred for 15 min . The mixture was evaporated in vacuo and the residue was chromatographed on silica gel [hexane-AcOEt (20:1)] to give 18a (172 mg, 72\%), mp 113-114 ${ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 72.32; H, 7.05; N, 4.71. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires C, $72.22 ; \mathrm{H}, 7.07 ; \mathrm{N}, 4.68 \%$ ); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 1740$ and $1650 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.6-2.9(10 \mathrm{H}, \mathrm{m})$, $3.68(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.4-4.5(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.50$ and 4.78 (total 2 H , both br s, $\left.\mathrm{C}=\mathrm{CH}_{2}\right)$ and $7.2-7.7(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

## Methyl 9-benzoyl-4-oxo-9-azabicyclo[3.3.1]nonane-1carboxylate 19a

A stream of ozone-enriched oxygen was passed through a solution of 18a ( $90 \mathrm{mg}, 0.30 \mathrm{mmol}$ ) in $\mathrm{DCM}\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ for 10 min . After purge of any unchanged excess of ozone by nitrogen flow, triphenylphosphine was added ( $87 \mathrm{mg}, 0.33 \mathrm{mmol}$ ) to the reaction mixture, which was then stirred at room temperature for 15 min . The mixture was evaporated in vacuo and the residue was chromatographed on silica gel [hexane-AcOEt (10: 1)] to give $19 \mathrm{a}\left(54 \mathrm{mg}, 60 \%\right.$ ), $\mathrm{mp} 149.5-150{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 67.81; H, 6.16; N, 4.72. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires C, 67.76; H, 6.36; N, 4.65\%) (Found: $\mathrm{M}^{+}, 301.1309$. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires $M, 301.1314$ ); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1732$ and $1646 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.45-1.59(1 \mathrm{H}, \mathrm{m}), 1.76-1.93(4 \mathrm{H}$, m), 2.01-2.09 ( $1 \mathrm{H}, \mathrm{br}$ ), $2.26(1 \mathrm{H}, \mathrm{td}, J 13.5$ and 4.2), 2.43-2.62 ( 2 H , unresolved m), 3.13-3.39 ( $1 \mathrm{H}, \mathrm{br}$ ), $3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.32(1 \mathrm{H}, \mathrm{dd}, J 6.2$ and $3.7,5-\mathrm{H}), 7.39-7.44(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.46-7.54 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ).

## 9-Benzoyl-2-methylene-9-azabicyclo[3.3.1]nonane 18b

Following the procedure described for the preparation of 18a, 17b $(40 \mathrm{mg}, 0.13 \mathrm{mmol})$ was treated with a solution of trifluoroacetic acid ( $41 \mathrm{mg}, 0.36 \mathrm{mmol}$ ) in DCM ( $3 \mathrm{~cm}^{3}$ ). The crude product was chromatographed on silica gel [hexaneAcOEt (7: 1)] to give 18b ( $22 \mathrm{mg}, 70 \%$ ) as a colourless oil (Found: $\mathrm{M}^{+}, 241.1465 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}$ requires $M, 241.1467$ ); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1628 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, for a mixture of two rotamers in a ratio of $1: 1) 1.52-1.83(5 \mathrm{H}, \mathrm{m}), 1.90-2.05$ $(2.5 \mathrm{H}, \mathrm{m}), 2.11-2.21(0.5 \mathrm{H}, \mathrm{m}), 2.32-2.41(1 \mathrm{H}, \mathrm{m}), 2.58-2.68$ $(1 \mathrm{H}, \mathrm{m}), 3.91-3.97(0.5 \mathrm{H}$, unresolved m$)$, $4.30(0.5 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.54(0.5 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.81(0.5 \mathrm{H}, \mathrm{br}$ s), 4.92-4.99(1.5 H, unresolved m), $5.35(0.5 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $7.37-7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

## 9-Benzoyl-9-azabicyclo[3.3.1]nonan-2-one 19b

Following the procedure described for the preparation of 19a, 18b ( $22 \mathrm{mg}, 0.09 \mathrm{mmol}$ ) was treated with ozone-enriched oxygen in DCM $\left(5 \mathrm{~cm}^{3}\right)$ and then triphenylphosphine ( 20 mg , 0.08 mmol ). The crude mixture was chromatographed on silica gel [hexane-AcOEt ( $10: 1$ )] to give 19b ( $17 \mathrm{mg}, 78 \%$ ), $\mathrm{mp} 87.5-$ $88.5{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: $\mathrm{M}^{+}, 243.1256$. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 243.1259$ ); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1729$ and $1633 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.49-1.84,1.88-2.01$ and 2.12-2.19 (total 7 H , all m), 2.35-2.69 ( $3 \mathrm{H}, \mathrm{m}$ ), 4.17 (br s) and $4.25(\mathrm{br} \mathrm{d}$, $J 9.5)($ total 1 H$), 5.14-5.21(1 \mathrm{H}, \mathrm{br})$ and $7.33-7.49(5 \mathrm{H}, \mathrm{m}$, ArH ).

## Radical cyclisation of compound 16c

Following the general procedure, $\mathbf{1 6 c}(140 \mathrm{mg}, 0.31 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(203 \mathrm{mg}, 0.70 \mathrm{mmol})$ and AIBN ( 14 mg , $0.09 \mathrm{mmol})$ in toluene $\left(50 \mathrm{~cm}^{3}\right)$ and the crude mixture was chromatographed on silica gel [hexane- $\operatorname{AcOEt}(20: 1)]$ to give a mixture of $(E)$ and $(Z)$ geometrical isomers (in a ratio of $1: 1$ ) of 9-benzoyl-1-methyl-4-(trimethylsilylmethylene)-9-azabicyclo[3.3.1]nonane 17c ( $96 \mathrm{mg}, 95 \%$ ) as a colourless oil (Found: $\mathrm{M}^{+}$,
327.2021. $\mathrm{C}_{20} \mathrm{H}_{29}$ NOSi requires $M, 327.2018$ ); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ $1651 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.31(9 \mathrm{H} \times 1 / 2$, s), $0.08(9 \mathrm{H} \times$ $1 / 2$, s), $1.57-2.28(8 \mathrm{H}, \mathrm{m}), 1.66(3 \mathrm{H} \times 1 / 2, \mathrm{~s}), 1.70(3 \mathrm{H} \times 1 / 2$, s), $2.37-2.53(1 \mathrm{H}, \mathrm{m}), 2.59-2.71(0.5 \mathrm{H}, \mathrm{m}), 2.79-2.92(0.5 \mathrm{H}$, $\mathrm{m}), 4.29(0.5 \mathrm{H}, \mathrm{br}$ s), $4.61(0.5 \mathrm{H}, \mathrm{br}$ s), $4.93(0.5 \mathrm{H}$, br s), 5.14 $(0.5 \mathrm{H}, \mathrm{br}$ s) and $7.32-7.53(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

## 9-Benzoyl-1-methyl-4-methylene-9-azabicyclo[3.3.1]nonane 18c

Following the procedure described for the preparation of 18a, $\mathbf{1 7 b}$ ( $310 \mathrm{mg}, 0.95 \mathrm{mmol}$ ) was treated with trifluoroacetic acid ( $236 \mathrm{mg}, 2.07 \mathrm{mmol}$ ) in DCM ( $5 \mathrm{~cm}^{3}$ ) and the crude product was chromatographed on silica gel [hexane-AcOEt (20: 1)] to give 18c ( $215 \mathrm{mg}, 89 \%$ ) as a colourless oil (Found: $\mathrm{M}^{+}$, 255.1630. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}$ requires $M, 255.1623$ ); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ 1648; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.57-2.19(7 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{s}$, 1-Me), 2.29-2.46 ( $2 \mathrm{H}, \mathrm{m}$ ), 2.65-2.78 ( $1 \mathrm{H}, \mathrm{m}$ ), 4.34-4.37 ( 1 H , unresolved m, 5-H), 4.47 ( $1 \mathrm{H}, \mathrm{br} \mathrm{s}$, alkenic), 4.73-4.76 ( $1 \mathrm{H}, \mathrm{m}$, alkenic), 7.33-7.43 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ) and 7.47-7.51 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.7,30.3,31.1,31.5,37.0,38.8,55.2$, $60.6,109.2,127.5,128.3,129.9,138.5,146.7$ and 173.7.

## 9-Benzoyl-1-methyl-9-azabicyclo[3.3.1]nonan-4-one 19c

Following the procedure described for the preparation of 19a, 18c ( $263 \mathrm{mg}, 1.03 \mathrm{mmol}$ ) was treated with ozone-enriched oxygen in DCM $\left(5 \mathrm{~cm}^{3}\right)$ and then triphenylphosphine ( 278 mg , $1.06 \mathrm{mmol})$. The crude mixture was chromatographed on silica gel [hexane-AcOEt ( $10: 1$ )] to give 19c ( $189 \mathrm{mg}, 71 \%$ ), mp 56$57{ }^{\circ} \mathrm{C}$ (from hexane) (Found: $\mathrm{M}^{+}$, 257.1414. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M, 257.1416) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1724$ and $1651 ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$ ) $1.44-2.05(7 \mathrm{H}, \mathrm{m}), 1.83(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 2.38-2.52$ $(2 \mathrm{H}, \mathrm{m}), 2.61-2.73(1 \mathrm{H}, \mathrm{m}), 4.19(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 4.0,5-\mathrm{H})$ and 7.35-7.50 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$ ) 18.7, 28.1 , 30.7, 31.6, 37.7, 40.9, 55.4, 65.8, 127.7, 128.7, 130.8, 136.9, 174.5 and 213.8.

## 9-Benzoyl-4 $\alpha$-hydroxy-1-methyl-9-azabicyclo[3.3.1]nonane 22

To a solution of $\mathbf{1 9 c}(395 \mathrm{mg}, 1.54 \mathrm{mmol})$ in methanol $\left(7 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(43 \mathrm{mg}, 1.13 \mathrm{mmol})$ at room temperature and the whole was stirred for $5 \mathrm{~min} .5 \% \mathrm{HCl}\left(5 \mathrm{~cm}^{3}\right)$ was added to the mixture and the solution was extracted with AcOEt. The organic layer was dried and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt ( $1: 1$ )] to give 22 ( $324 \mathrm{mg}, 81 \%$ ), mp $155-156{ }^{\circ} \mathrm{C}$ (from AcOEt) (Found: $\mathrm{M}^{+}$, 259.1565. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M, 259.1572$ ); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ 3388, 1645 and $1620 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.54-1.80(4 \mathrm{H}, \mathrm{m})$, $1.61(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.85(1 \mathrm{H}, \mathrm{br}$ s, OH$), 1.92-2.15(6 \mathrm{H}, \mathrm{m})$, $3.81(1 \mathrm{H}, \mathrm{t}, J 5.2), 3.95(1 \mathrm{H}$, ddd, $J 9.5,7.5$ and 5.2$)$ and $7.33-$ $7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.5,22.7,30.1$, 30.6, 36.9, 37.4, 54.8, 57.3, 69.9, 127.1, 128.5, 130.0, 138.4 and 173.9 .

## Dehydration of 22 with Martin sulfurane

To a solution of $22(100 \mathrm{mg}, 0.39 \mathrm{mmol})$ in benzene $\left(10 \mathrm{~cm}^{3}\right)$ was added Martin sulfurane $\{$ bis $[\alpha, \alpha$-bis(trifluoromethyl)-phenylmethyloxy]diphenyl- $\lambda^{4}$-sulfane $\}(1.04 \mathrm{~g}, 1.54 \mathrm{mmol})$ and the solution was heated under reflux for 16 h . After cooling, the reaction mixture was diluted with saturated aq. $\mathrm{NaHCO}_{3}$ and the organic phase was separated. The aqueous phase was extracted with diethyl ether, then the combined organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude material was chromatographed on silica gel [hexaneAcOEt (15: 1)]. The first fraction gave 9-benzoyl-1-methyl-9-azabicyclo[3.3.1]non-3-ene 23 ( $5 \mathrm{mg}, 5 \%$ ) as a colourless oil (Found: $\mathrm{M}^{+}, 241.1461 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}$ requires $M, 241.1467$ ); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1649 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.39(1 \mathrm{H}$, dtd, $J 12.9$, 4.3 and 2.4$), 1.54-1.61(2 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.77(1 \mathrm{H}$, $\mathrm{dt}, J 12.9$ and 4.0$), 1.83(1 \mathrm{H}$, ddd, $J 12.6,4.3$ and 1.6), 1.92 $(1 \mathrm{H}, \mathrm{tt}, J 12.6$ and 4.0), 2.03 (1 H, ddd, $J$ 18.6, 4.3 and 1.9), 2.72
$(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 18.6), 4.33(1 \mathrm{H}, \mathrm{t}$ like br s), $5.47(1 \mathrm{H}$, dddd, $J 9.8$, 4.3, 2.4 and 1.9), 5.95 ( 1 H , dddd, $J .8,4.3,3.1$ and 0.7 ), $7.35-$ $7.43(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.51-7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100.5$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$ ) 17.4, 27.8, 30.5, 38.0, 41.6, 54.8 (CH), 55.0 (quaternary), 126.5, 127.5, 128.3, 129.1, 129.9, 138.4 and 173.7 .

The second fraction gave 9-benzoyl-4 3 -[bis(trifluoromethyl)-phenylmethoxy]-1-methyl-9-azabicyclo[3.3.1]nonane 24 ( 106 mg , $57 \%$ ) as a colourless oil (Found: $\mathrm{M}^{+}, 485.1787 . \mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{NO}_{2}$ requires $M$, 485.1789); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1653 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.50-1.82(4 \mathrm{H}, \mathrm{m}), 1.57(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.92-2.32(6 \mathrm{H}$, $\mathrm{m}), 3.89-4.01(2 \mathrm{H}, \mathrm{m})$ and 7.21-7.46 ( $10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ).

## 9-Benzoyl-4-(trifluoromethylsulfonyloxy)-1-methyl-9-azabicyclo[3.3.1]non-3-ene 25

To a solution of LDA [1.94 mmol, prepared from diisopropylamine ( $197 \mathrm{mg}, 1.94 \mathrm{mmol}$ ) and a $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of butyllithium in hexane $\left(1.25 \mathrm{~cm}^{3}, 1.94 \mathrm{mmol}\right)$ at $\left.0^{\circ} \mathrm{C}\right]$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of $19 \mathrm{c}(200 \mathrm{mg}$, $0.77 \mathrm{mmol})$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ and the whole was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . To this mixture was added a solution of Comins' reagent $\{2-[\mathrm{N}, \mathrm{N}$-bis(trifluoromethylsulfonyl)amino]-5-chloropyridine\} $(458 \mathrm{mg}, 1.17 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm to room temperature overnight. After the mixture had been diluted with $5 \% \mathrm{HCl}$ at $0{ }^{\circ} \mathrm{C}$ it was extracted with diethyl ether and the extract was washed successively with $5 \%$ aq. NaOH and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt ( $15: 1)$ ]. The first fraction gave 25 ( 188 mg , $63 \%$ ) as a colourless oil (Found: $\mathrm{M}^{+}, 389.0903 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$ requires $M, 389.0908$ ); [Found: $(\mathrm{M}+\mathrm{H})^{+}, 390.0983 . \mathrm{C}_{17} \mathrm{H}_{19}{ }^{-}$ $\mathrm{F}_{3} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M \mathrm{H}^{+}, 390.0987\right] ; v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1660,1419$, 1211 and 1142; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.61-1.75(3 \mathrm{H}, \mathrm{m}), 1.69$ ( $3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}$ ), $1.77-1.92(3 \mathrm{H}, \mathrm{m}), 2.21(1 \mathrm{H}, \mathrm{dd}, J 18.5$ and 4.9 , one of $\left.2-\mathrm{H}_{2}\right), 2.94\left(1 \mathrm{H}\right.$, ddt, $J 18.5,3.1$ and 1.5 , one of $2-\mathrm{H}_{2}$ ), $4.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 5-\mathrm{H}), 5.98(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and $3.1,3-\mathrm{H}), 7.34$ $7.49(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.54-7.58(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100.5$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 17.4\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 29.3(1-\mathrm{Me}), 35.8\left(\mathrm{CH}_{2}\right)$, $40.8\left(\mathrm{CH}_{2}\right), 54.1(1-\mathrm{C}), 56.2(5-\mathrm{C}), 119.2(3-\mathrm{C}), 127.9(\mathrm{ArC})$, $128.5(\mathrm{ArC}), 131.0(\mathrm{ArC}), 136.6(\mathrm{ArC}), 145.5(2-\mathrm{C})$ and 174.8 ( $\mathrm{C}=\mathrm{O}$ ).

The second fraction gave the unchanged starting material 19c ( $53 \mathrm{mg}, 27 \%$ recovery).

## 9-Benzoyl-1-methyl-9-azabicyclo[3.3.1]non-3-ene 23

To a solution of $\mathbf{2 5}(45 \mathrm{mg}, 0.11 \mathrm{mmol})$ in acetonitrile $\left(3 \mathrm{~cm}^{3}\right)$ were added borane-dimethylamine complex ( $7 \mathrm{mg}, 0.11 \mathrm{mmol}$ ), tetrakis(triphenylphosphine)palladium(o) ( $7 \mathrm{mg}, 5.8 \mu \mathrm{~mol}$ ) and potassium carbonate ( $16 \mathrm{mg}, 0.11 \mathrm{mmol}$ ) and the whole was heated at $40^{\circ} \mathrm{C}$ for 1 h . After the solution had been diluted with diethyl ether $\left(5 \mathrm{~cm}^{3}\right)$ and water $\left(5 \mathrm{~cm}^{3}\right)$ the organic phase was separated and the aqueous phase was further extracted with diethyl ether. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexane- $\operatorname{AcOEt}(15: 1)$ ] to give $\mathbf{2 3}(27 \mathrm{mg}, 97 \%)$ as a colourless oil.

## Hydroboration-oxidation of 23

To a solution of $\mathbf{2 3}(40 \mathrm{mg}, 0.16 \mathrm{mmol})$ in THF $\left(1 \mathrm{~cm}^{3}\right)$ was added a $0.9 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of borane-THF complex in THF $\left(0.56 \mathrm{~cm}^{3}, 0.50 \mathrm{mmol}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the solution was stirred at room temperature for 2 h . After addition of $12 \% \mathrm{aq} . \mathrm{NaOH}$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ to it the whole was stirred at room temperature for 3 h . The mixture was diluted with diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ and the organic phase was separated, washed successively with saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexaneAcOEt (2:1)]. The first fraction gave 9-benzoyl-4 3 -hydroxy-1-methyl-9-azabicyclo[3.3.1]nonane 26 ( $13 \mathrm{mg}, 31 \%$ ), mp 136-137
${ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 73.71; H, 8.30; N, 5.11 . $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires C, 74.10; H, 8.16; N, 5.40); (Found: M ${ }^{+}$, 259.1575. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M, 259.1572$ ); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ 3399,1639 and $1624 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, OH was not observed) 1.48-2.10 ( $8 \mathrm{H}, \mathrm{m}$ ), 1.58 ( $3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}$ ), 2.25-2.38 $(2 \mathrm{H}, \mathrm{m}), 3.75-3.78(1 \mathrm{H}$, unresolved m$)$, 3.99-4.03 ( 1 H , unresolved m), 7.33-7.41 (3 H, m, ArH) and 7.52-7.56 ( $2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.5,25.9,29.3,31.3,32.1,38.5$, 55.1, 58.9, 69.9, 127.7, 128.3, 129.8, 138.9 and 175.1.

The second fraction gave 9-benzoyl-3 $\beta$-hydroxy-1-methyl-9azabicyclo[3.3.1]nonane 27 ( $16 \mathrm{mg}, 39 \%$ ), $\mathrm{mp} 167-68^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 73.91; H, 8.17; N, 5.29\%) (Found: $\left.\mathrm{M}^{+}, 259.1562\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3399,1645$ and 1623; $\delta_{\mathrm{H}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$, OH was not observed) $1.50-1.68(3 \mathrm{H}, \mathrm{m}), 1.68$ ( $3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}$ ), $1.69-1.81(3 \mathrm{H}, \mathrm{m}), 1.86(1 \mathrm{H}, \mathrm{ddd}, J 13.3,11.0$ and 2.3), $1.94(1 \mathrm{H}, \mathrm{ddt}, J 13.3,6.4$ and 1.8$), 1.97-2.07(1 \mathrm{H}, \mathrm{m})$, $2.03(1 \mathrm{H}$, ddd, $J 13.3,6.4$ and 1.5$), 4.04-4.08(1 \mathrm{H}$, unresolved $\mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{tt}, J 11.0$ and 6.4$), 7.36-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.49-7.53 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ); $\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$ ) 21.1, 29.5 , $31.0,37.1,39.9,47.8,54.0,56.4,64.8,127.1,128.5,130.0,138.4$ and 173.5 .

## Dehydration of 26 with Martin sulfurane

Following the procedure described for the dehydration of 22, 26 $(9 \mathrm{mg}, 34 \mu \mathrm{~mol})$ was treated with a solution of Martin sulfurane ( $93 \mathrm{mg}, 138 \mu \mathrm{~mol}$ ) in benzene ( $5 \mathrm{~cm}^{3}$ ) and the crude product was purified by column chromatography on silica gel [hexane$\operatorname{AcOEt}(15: 1)]$ to give $23(7 \mathrm{mg}, 85 \%)$.

## 9-Benzoyl-1-methyl-9-azabicyclo[3.3.1]nonan-3-one 28

To a solution of $\mathbf{2 7}(9 \mathrm{mg}, 34 \mu \mathrm{~mol})$ in DCM $\left(3 \mathrm{~cm}^{3}\right)$ containing molecular sieves $4 \AA(10 \mathrm{mg})$ were added TPAP ( 2.4 mg , $6.8 \mu \mathrm{~mol})$ and NMO ( $8.1 \mathrm{mg}, 69 \mu \mathrm{~mol}$ ) at room temperature and the whole was stirred for 15 min . After filtration of the insoluble material using AcOEt the filtrate was concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (2:1)] to give $\mathbf{2 8}$ ( 9 mg , quant.) as a colourless oil (Found: $\mathrm{M}^{+}$, 257.1412. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M, 257.1416$ ); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ 1711 and $1650 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.55-1.75(4 \mathrm{H}, \mathrm{m}), 1.74$ ( $3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}$ ), $1.83-1.99(2 \mathrm{H}, \mathrm{m}), 2.27(1 \mathrm{H}, \mathrm{dt}, J 16.3$ and 1.5$)$, $2.42(1 \mathrm{H}, \mathrm{dd}, J 16.3$ and 1.8$)$, $2.47(1 \mathrm{H}, \mathrm{dd}, J 16.3$ and 7.0$)$, $2.96(1 \mathrm{H}$, br d, $J 16.3)$, 4.35-4.39 ( 1 H , unresolved $\mathrm{m}, 5-\mathrm{H}$ ), 7.40-7.51 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ) and 7.58-7.61 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ); $\delta_{\mathrm{C}}(100.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $17.8,29.6,30.6,39.4,45.2,51.8,54.2,57.2,127.7$, 128.7, 130.9, 137.3, 174.7 and 209.2.

## Oxidation of alcohol 26 to 19c

Following the procedure described for the preparation of 28, 26 ( $3.3 \mathrm{mg}, 12.7 \mu \mathrm{~mol}$ ) was treated with TPAP $(1.3 \mathrm{mg}, 3.60 \mu \mathrm{~mol})$ and NMO ( $3.0 \mathrm{mg}, 25.4 \mu \mathrm{~mol}$ ) and the crude material was chromatographed on silica gel [hexane-AcOEt (10: 1)] to give $19 \mathrm{c}(3.1 \mathrm{mg}, 95 \%)$.

## References

1 (a) T. Sato, T. Mori, T. Sugiyama, H. Ishibashi and M. Ikeda, Heterocycles, 1994, 37, 245; (b) T. Sato, Y. Kugo, E. Nakaumi, H. Ishibashi and M. Ikeda, J. Chem. Soc., Perkin Trans. 1, 1995, 1801; (c) M. Ikeda, Y. Kugo and T. Sato, J. Chem. Soc., Perkin Trans. 1, 1996, 1819; (d) M. Ikeda, Y. Kugo, Y. Kondo, T. Yamazaki and T. Sato, J. Chem. Soc., Perkin Trans. 1, 1997, 3339; (e) M. Ikeda, M. Hamada, S. A. A. El Bialy, K. Matsui, S. Kawakami, Y. Nakano, S. M. M. Bayomi and T. Sato, Heterocycles, 2000, 52, 571; ( $f$ ) T. Sato, K. Okamoto, Y. Nakano, J. Uenishi and M. Ikeda, Heterocycles, 2001, 54, 747.
2 For the generation of $\alpha$-acylamino radicals by 1,5 -hydrogen-transfer reactions of $o$-halobenzamides, see: V. Snieckus, J.-C. Cuevas, C. P. Sloan, H. Liu and D. P. Curran, J. Am. Chem. Soc., 1990, 112, 896; D. P. Curran and W. Shen, J. Am. Chem. Soc., 1993, 115, 6051; D. P. Curran and H. Liu, J. Chem. Soc., Perkin Trans. 1, 1994, 1377;
F. Beaulieu, J Arora, U. Veith, N. J. Taylor, B. J. Chapell and V. Snieckus, J. Am. Chem. Soc., 1996, 118, 8727.

3 For a recent synthesis of the 9-azabicyclo[3.3.1]nonane ring system, see: Y. Hamada, N. Okamoto and O. Hara, Heterocycles, 2000, 52, 929.

4 For recent syntheses of euphococcinine, see: R. K. Hill and L. A. Renbaum, Tetrahedron, 1982, 38, 1959; D. H. Gnecco Medina, D. S. Grierson and H.-P. Husson, Tetrahedron Lett., 1983, 24, 2099; C. Yue, J. Royer and H.-P. Husson, J. Org. Chem., 1992, 57, 4211; E. C. Davison and A. B. Holmes, Tetrahedron Lett., 1995, 36, 9047 ; A. B. Holmes, B. Bourdin, I. Collins, E. C. Davison, A. J. Rudge, T. C. Stork and J. A. Warner, Pure Appl. Chem., 1997, 69, 531; S.-I. Murahashi, J. Sun, H. Kurosawa and Y. Imada, Heterocycles, 2000, 52, 531; M. F. Mechelke and A. I. Meyers, Tetrahedron Lett., 2000, 41, 4339.
5 A. Hassner, R. Maurya, A. Padwa and W. H. Bullock, J. Org. Chem., 1991, 56, 2775.
6 F. Johnson, Chem. Rev., 1968, 68, 375; R. W. Hoffmann, Chem. Rev., 1989, 89, 1841; M. Natsume and M. Ogawa, Chem. Pharm. Bull., 1982, 30, 3442.
7 N. K. Hart, S. R. Johns and J. A. Lamberton, Aust. J. Chem., 1967, 20, 561.
8 (a) W. V. Brown and B. P. Moore, Aust. J. Chem., 1982, 35, 1255; (b) T. Eisner, M. Goetz, D. Aneshausley, G. Ferstandig-Arnold and J. Meinwald, Experientia, 1986, 42, 204.

9 For a review, see: V. V. Kane, V. Singh, A. Martin and D. L. Doyle, Tetrahedron, 1983, 39, 345.
10 E. M. Burgess, H. R. Penton, Jr. and E. A. Taylor, J. Org. Chem., 1973, 38, 26.
11 J. C. Martin and R. J. Arhart, J. Am. Chem. Soc., 1971, 93, 4327.

12 B. H. Lipshutz, D. J. Buzard and R. W. Vivian, Tetrahedron Lett., 1999, 40, 6871.; When the alkenyl triflate 25 was subjected to previously developed conditions (see ref. 15), the reduction proceeded with lower yields, and the product was contaminated with the stannane- or silane-derived by-products (in all cases) which were difficult to separate by column chromatography.
13 D. L. Comins and A. Dehghani, Tetrahedron Lett., 1992, 33, 6299. When the $N$-phenyltriflimide (see ref. 16) was used for trapping of the enolate, the imide-derived by-products were difficult to remove from 25 by column chromatography.
14 S. V. Ley, J. Norman, W. P. Griffith and S. P. Marsden, Synthesis, 1994, 639.
15 W. J. Scott and J. K. Stille, J. Am. Chem. Soc., 1986, 108, 3033; W. J. Scott and J. E. McMurry, Acc. Chem. Res., 1988, 21, 47; K. Ritter, Synthesis, 1993, 735; H. Kotsuki, P. K. Datta, H. Hayakawa and H. Suenaga, Synthesis, 1995, 1348.

16 J. E. McMurry and W. J. Scott, Tetrahedron Lett., 1983, 24, 979.


[^0]:    $\dagger$ Electronic supplementary information (ESI) available: Experimental

[^1]:    $\ddagger$ The numbering system of the 9 -azabicyclo[3.3.1]nonane ring system may change depending upon the substituents. To avoid confusion in this discussion, we used the numbering system for compounds 22-28 as shown in formula 22.

